
Stacking velocity estimation using recurrent neural network
Reetam Biswas∗, University of Texas at Austin; Anthony Vassiliou, Rodney Stromberg, GeoEnergy Inc. and Mrinal K.
Sen, University of Texas at Austin

SUMMARY

We describe a new method based on the Machine Learning
(ML) technique for normal moveout correction (NMO) and
estimation of stacking velocity. A Recurrent Neural Network
(RNN) is used to calculate stacking velocity directly from the
seismic data. Finally, this velocity is used for NMO correc-
tion of the data. We used the Adam optimization algorithm
to train the network of neurons to estimate stacking velocity
for a batch of seismic gathers. This velocity is then compared
with the correct stacking velocity to update the weight. The
training method minimizes a cost function defined as the mean
squared error between the estimated and the correct velocities.
The trained network is then used to estimate stacking veloc-
ity for rest of the gathers. Here we illustrate out method on a
noisy real data set from Poland. We first trained the network
using only 18 percent of gathers and then used the network to
calculate stacking velocity for the remaining gathers. We used
these stacking velocity to perform Normal moveout correction
and finally we stacked to get the post-stack seismic section.
We also show comparison between the stacks generated from
the two velocities.

INTRODUCTION

Deep neural networks have been applied successfully in sev-
eral areas of science and engineering, such as handwriting recog-
nition, speech recognition, and signal detection (e.g., Freeman
and Skapura, 1991; Cichocki and Unbehauen, 1993). It has
recently gained an immense popularity in the field of seismic
exploration geophysics. There has been a wide variety of ap-
plications of Deep Neural Network. An example of this is first-
break picking from seismic data (Murat and Rudman, 1992;
McCormack and Rock, 1993) or velocity picking from veloc-
ity scans for velocity analysis (Schmidt et al., 1992; Fish and
Kusuma, 1994). It has also been applied to the study of shear
wave splitting (Dai and MacBeth, 1994) and heavily used in
characterization of reservoir from seismic reflection data (An
et al., 1993). Some of the recent applications include in clas-
sification problems to differentiate one seismic attributes from
another (Leiphart and Hart, 2001; Russell, 2004).

We use one of the Machine Learning tools to solve a regression
problem where we try to estimate stacking velocity directly
from seismic data for Normal Moveout correction. Here both
the spatial and temporal information are important for estima-
tion of the stacking velocity. This problem can be solved using
a Recurrent Neural Network (RNN). A RNN has the ability
to send feedback signals so as to form a directed cycle sim-
ilar to a Hopfield net (Hopfield, 1982) and long-short term
memory (LSTM) (Hochreiter and Schmidhuber, 1997). The
network architecture is similar to that of the multilayer feed-

forward neural network (FNN). The FNN is most widely used
to solve pattern recognition problems because of the simplic-
ity and its generality for solving a variety of problems. But
a feedforward neural network allows the signal to travel only
in one direction, i.e. from input to output. The output of any
layer does not affect that same layer, they simply associate in-
put to the output. On the other hand in a recurrent network,
the signal can travel in both directions by introducing a loop in
the network. These make the network powerful, but it can get
extremely complicated. The output of the current state is de-
pendent on the output of the previous states, which gives them
a kind of memory. The feedback makes the recurrent network
dynamic and their states change continuously until an equilib-
rium point is reached. If the input is changed then again a new
equilibrium needs to be found. The weights are updated us-
ing a back-propagation training method, where an update to
the weights is calculated by the mean squared error between
computed and desired output. The input-output pattern is used
for training the network and is termed as training set. The
main aim is to learn a mapping from the known input-output
patterns and then later apply the trained network on the input
with unknown output.

Similar attempt have been made by Calderón-Macı´as et al.
(1998) to estimate NMO velocity using a feedforward neural
network. In this paper the proposed approach to network train-
ing is not restricted to the NMO-correction and velocity esti-
mation process, but it can be adapted to other problems such as
prestack migration velocity analysis. We illustrate the method
with a real land data set from Poland.

THEORY

This section introduces the various basic concepts about the
Recurrent Neural Network (RNN) and describes the way data
is input in the network to calculate the stacking velocity.

Recurrent Neural Network (RNN)

A RNN is a type of Neural Network which is quite similar to
a feedforward neural network, except that can send a feedback
signal, i.e. it also has connections pointing backward. Fig-
ure 1 shows an example of a simple RNN. The figure in the
left shows the recursive model of the RNN and the right fig-
ure shows the unrolled RNN through time. In RNN at time
step t every neuron receives both the input vector xt and the
output vector from the previous time step yt−1 as shown in
Figure 1(b). More specifically, suppose a given observation se-
quence x = x1,x2, ...,xt ia associated with the output sequence
vector y = y1,y2, ...,yt ; we want to examine a map f : x→ y.
Each neuron in the RNN has two sets of weights: one for the
input signal x represented as Wxy and another for the output
from the previous time step y represented as Wyy. We can rep-
resent the network using



Stacking Velocity estimation using Recurrent Neural Network

yt = φ
(
WT

xy ·xt +WT
yy ·yt−1 +b

)
, (1)

where φ represents the activation function and b is the bias
vector. There are several choice of activation available e.g.,
sigmoid, RELU, tanh etc. Generally, in our application we use
RELU activation function. Notice that the one hidden layer of
RNN can be easily extended into multiple layers, which repre-
sents a Deep Neural Network. Having multiple neurons helps
to characterize multiple features in the data and thus predict
the output better.

y
Wyz

Wxy
x

Z
Wyz

Wxy
xt-1

Z

yt-1

xt-1

Zt-1
Wyz

Wxy
xt

Z

yt

xt+1

Zt ZZt+1

yt+1
Wxy

Wyz
Wyy Wyy Wyy

a) b)

Wyy

Figure 1: Shows a simple example of a RNN a) the left dia-
gram shows the recursive form of RNN, and b) the right shows
the extended form of RNN in time.

During training of the network, in a single iteration we update
the weight for not just a single sequence but a multiple se-
quence of data known as mini-batch. Equation 1 can be modi-
fied to compute the output of the whole mini-batch in a single
shot by representing it as

Yt = φ
(
Xt ·Wxy +Yt ·Wyy +b

= φ

([
Xt Yt−1

]
·W+b

)
, (2)

with W =

[
Wxy
Wyy

]
. If the mini-batch has m instances of differ-

ent sequences containing nn neurons and ni input vector size;
then matrix Yt has a dimension of m×nn, Xt has m×ni, Wxy
has ni× nn, Wyy has nn× nn and finally the bias vector b has
dimension of nn. Note that Yt is a function of Xt and Yt−1,
which again is a function of Xt−1 and Yt−2 and so on. Thus
Yt is a function of all the inputs since time t = 0. The value of
Y0 is typically set to zero. Due to this dependence of recurrent
neuron on the previous output, it exhibits a memory property.
A part of the network uses the memory of the previous inputs
to predict the future output. This simple cell is also called as a
memory cell.

The output vector y from RNN is a vector of size nn, but we
can modify the length to a desired length by applying a Fully
Connected layer on top of the RNN. This can be represented
as

Zt = FC(yt), (3)

where the fully connected layer FC has a weight W f c of di-
mension of nn× k; where k is the number of desired output.
Now, after a single forward pass for a mini-batch we use mean
squared error of the predicted velocity and the given velocity
as

E =
1
m

m∑
i=1

(Zgiven−Zpredicted)
2. (4)

We employ Adam-optimization to update the weights after each
forward pass of a mini-batch. The gradient ∂E

∂w is calculated
using back-propagation and the weights are updated using a
given learning rate value, which acts as a step length for the
update. For detail about the back-propagation technique re-
fer to Chen (2016). Note that here Z represents the stacking
velocity.

Stacking velocity Estimation

In a CMP gather there can be multiple hyperbolas spanning
a large offset and in temporal direction, therefore estimating
correct stacking velocity such that it places the reflection at the
correct location is challenging and important. The main aim is
to flatten the hyperbolas so that the reflection from same depth
(TWT) can be stacked together constructively. For estimating
the velocity at a particular time step, temporal as well as spa-
tial information from the nearby time step and offset is quite
important. Therefore to estimate stacking velocity at a par-
ticular time step we have used a window, spanning the whole
offset range (NX) and 2N in the temporal direction. Figure 2
shows the representation, where the dimension of the window
(represented in red) used is 2N×NX , for estimating stacking
velocity at the magenta location.

2N

t=0

t=t
max

NX

One CMP Gather

Figure 2: Representation of a CMP gather (with offset size
of NX) and the blocks of data from the CMP gather used for
creating a single instance of a mini-batch. The magenta line
represents the time at which velocity is being estimated and the
red block (of size 2N) represents the data used for estimating
the velocity at that point.



Stacking Velocity estimation using Recurrent Neural Network

RESULT

We applied our RNN based stacking velocity estimation on a
Prestack 2D land vibroseis data provided by Geofizyka Torun
Sp. Z.o.o, Poland available in public domain. The data after
initial pre-processing and removal of noise is ready for veloc-
ity analysis. In our test case we have used 1000 neurons in
the recurent network, 60 offsets in each gather, window size of
100 and a total of 700 samples in temporal domain. The data
has a sampling rate of 2ms. We initially generated stacking ve-
locity using semblance based velocity analysis for a small part
of the section. Figure 3a shows the picked stacking velocity
from the velocity analysis. This is treated as known or given
velocity. We then divided the seismic gathers randomly in 18
% and 82 % respectively for training and testing set. We used
the gathers in the training set and their respective velocity to
train the recurrent network. At each iteration a mini batch is
created using a gather and weights are updated. We ran mul-
tiple epoch of 10 to train the network and gain desired error
level. After the network is trained, the velocity is estimated on
the test data. Figure 3b shows the predicted stacking velocity
from the recurrent network. This section has both the velocity
from training and testing.

V
given

400 600 800 1000

CDP Number

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e
 (

s
)

2.8

3

3.2

3.4

3.6

3.8

(a)

V
predicted

400 600 800 1000

CDP Number

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e
 (

s
)

2.8

3

3.2

3.4

3.6

3.8

(b)

Figure 3: a) shows the given staking velocity and b) shows the
estimated stacking velocity from the RNN.

After the velocity has been calculated for the part of the data,
we used these velocities for the NMO correction of the data
and finally stack the data to check the correctness of the es-
timation. Figure 5 shows the stacked section, where the first
stack is generated using the given velocity and the second stack

is generated using the network estimated stacking velocity.
Just by observation they seem quite similar. Figure 6 shows
an example of velocity estimation from a gather selected from
test set. The first panel (a) shows the given uncorrected gather
where, using an ellipse we have pointed one of the hyperbola
in the noisy data. Panel (b) shows the NMO corrected gather
using the given velocity and the corresponding hyperbola from
panel (a) flattening up. Similarly in panel (c) the gather is cor-
rected using the predicted velocity and the result is similar to
the panel (b). Finally we show a comparison of the velocity in
panel (d), where the given/true velocity is shown in blue and
the estimated velocity in orange.

Percentage Error

400 600 800 1000

CDP Number

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e
 (

s
)

2

4

6

8

10

Figure 4: Shows the percentage difference in estimation of
Vpredicted from the the Vgiven NMO velocity

Stack using Given NMO Velocity

400 600 800 1000

CDP Number

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e
 (

s
)

(a)

Stack using Predicted NMO Velocity

400 600 800 1000

CDP Number

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e
 (

s
)

(b)

Figure 5: a) shows the stacked section after NMO correction
using the given stacking velocity and b) shows the stacked sec-
tion after NMO correction using the estimated stacking veloc-
ity from the RNN.



Stacking Velocity estimation using Recurrent Neural Network

a) b) c) d)

Figure 6: a) Shows a gather before NMO correction at a certain CDP location. One of the hyperbola is highlighted using an ellipse
b) Shows NMO corrected gather using the given stacking velocity and the flatten hyperbola is marked by an ellipse. c) Shows
NMO corrected gather using the predicted stacking velocity and again the flatten hyperbola is marked by an ellipse. d) Shows the
comparison of the given stacking velocity (in blue) and the predicted stacking velocity (in orange).

DISCUSSION AND CONCLUSION

In this paper, we demonstrated one of the applications of ma-
chine learning tool in a geophysical problem. We applied Re-
current Neural Network for stacking velocity estimation di-
rectly from the seismic gather and performed NMO correc-
tion using the estimated velocity. The NMO result is quite
similar to the one picked from the semblance based velocity.
In stacking velocity estimation, relationship of one point with
both the temporal and spatial region is very important. Due to
the memory property of the recurrent network, current output
depends on the past output, and the neighborhood dependency
can easily be established and hence better estimation of stack-
ing velocity. We showed the application of our method on a
real data set, where we trained the data using 18% of the data
and performed test on the rest of the data after training. The
velocity estimate is quite reasonable and match the semblance
based velocity.


