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Summary 
 
We present a novel nonlinear waveform inversion method 
for subsurface parameter estimation. This method utilizes 
the full Knott-Zoeppritz equations for forward modeling 
seismic data in combination with an effective and efficient 
gradient-based optimization scheme that is capable of 
bypassing local minima. The use of the Knott-Zoeppritz 
equations allows for significantly better recovery of shear 
wave and density parameters than conventional AVO 
approximations allow. Our optimization scheme uses a 
flexible error function that can be modified to produce 
optimal results for multiple use cases. We apply our 
method to synthetically generated seismic data and invert 
for compressional wave velocity ( ௣ܸ), shear wave velocity 
( ௦ܸ), and bulk density (ߩ). Synthetic results show our 
method to be extremely effective, even when the signal-to-
noise ratio (SNR) is poor or the initial model is inaccurate. 
 
Introduction 
 
Over the past several decades, Amplitude-vs-Offset (AVO) 
information in seismic data has been successfully used to 
estimate subsurface elastic properties. The physical laws 
governing the reflection of seismic energy at a layer 
interface is related to elastic properties of the layers above 
and below the interface and the incident angle of the wave. 
This information in turn can be used to formulate in inverse 
problem to estimate the elastic properties of the layers. 
 
Traditionally, this inverse problem has been linearized 
using AVO approximations. This linearization simplifies 
the inversion, but comes at a cost: the approximation error 
increases significantly at high incident angles, making the 
forward modeling of far offset seismic data unreliable. In 
practice this significantly reduces the accuracy of shear 
wave and density estimates, since seismic reflectivity (ܴ௉௉) 
is more sensitive to these parameters at farther offsets / 
higher incident angles (Asveth et al., 2010). Using the full 
Knott-Zoeppritz equations in forward modeling avoids this 
issue and allows for better estimates of ௦ܸ and ߩ, but 
requires a nonlinear optimization scheme. In this work, we 
present an optimization scheme that is designed explicitly 
for this purpose. Our method is based on conjugate-
gradients and utilizes a quadratic stepsize code that is 
capable of escaping local minima. The optimization is 
efficient and has the throughput required for inverting large 
seismic datasets (several thousand iterations per hour using 
one 4-core/8-thread CPU). We successfully test our method 

with synthetic seismic data over a wide range of conditions. 
Synthetic data was modeled from a real well log using 
Zoeppritz equations, a convolutional model, a Ricker 
wavelet, and various levels of noise. Additionally, we 
successfully performed this inversion on real 3D seismic 
data from an unconventional play. Unfortunately, due to 
data licensing and confidentiality agreements we are not 
able to include these results in this paper, but we will 
briefly discuss the process we used. 
 
Method 
 
The overall workflow of our optimization scheme is 
summarized in Figure 1, shown below. This inversion uses 
the full Knott-Zoeppritz equations and convolutional 
modeling to predict synthetic seismic data. In the 
convolutional forward modeling we used a Ricker wavelet 
for the synthetic data inversion and a statistically derived 
wavelet for the real data inversion. During the real data 
inversion we converted to the angle domain using the 
current P-wave velocity model and Equation 1. Note that 
this requires the forward modeler must be capable of using 
time-varying incident angles. Iteratively updating the 
incident angles ensures that the incident angles are closer to 
their true values when the final model is inverted. The 
synthetic data, however, was generated in angle domain 
and as such we did not convert the synthetic data to offset. 
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Figure 1:  A diagram summarizing the main points of our inversion 
method. See Equation 2 for the specific formulation of our Error 
function and Equation 1 for the offset-to-angle conversion formula. 
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Prior to starting the inversion, the initial model is 
normalized. This serves to standardize the amplitudes of 
the parameters and stabilize the inversion. ௣ܸ and ௦ܸ were 
both normalized by the mean ௣ܸ, and density was 
normalized by the mean density. This normalization does 
not affect the layer contrasts used in the Zoeppritz 
equations, and thus does not affect the forward modeling 
operation. This normalization is reversed after the final 
model is found by the inversion algorithm. 
 
In order to increase the range of situations in which our 
inversion method is successful, we chose to use a very 
flexible and general error function. Our error function, 
shown in Equation 1, consists of elements of L2 data norm, 
L2 model norm, total variation norm, and a constraint on 

௣ܸ ௦ܸ⁄  ratio of inverted results. Including L2 data and L2 
model norm is standard practice; however, the total 
variation norm is included to help promote sparse layer-like 
models, and the ௣ܸ ௦ܸ⁄  ratio constraint ensures the inversion 
results are physically realistic. 
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where ࢓ and ࢓૙ are the current and initial model, ࢊ is the 
seismic data, ݃ሺ࢓ሻ is the forward operator used to make 
synthetics, ߙଵ to ߙଷ are weights, ܦଵ is a 1st derivative finite 

difference matrix, ௗܹ, ௠ܹ, and ்ܹ௏ are weighting 

matrices, and |… |ଵ indicates the L1 norm. Specific weights 
are chosen via trial and error, though we found that having 
error primarily come from the L2 data norm, followed by 
the total variation norm, and lastly by the L2 model norm 
and ௣ܸ ௦ܸ⁄  constraint, works well in practice. We 
constructed our ௣ܸ ௦ܸ⁄  constraint by constructing a 
probability distribution ሺܲሻ of ௣ܸ ௦ܸ⁄  ratios using the well 
information as a rough guide. The error is then calculated 

using: ܧ ቀ
௏೛

௏ೞ
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௏ೞ
ቁቃ. Refer to Figure 2 for a 

visual example of the probability distribution ሺܲሻ. 

 

After all parameters are set the inversion can be started. 
Once the (optional) offset-to-angle conversion has finished, 
the gradient of the error function is calculated using a 
standard finite difference scheme. Care is taken to avoid 
unnecessarily re-calculating information when possible. 
The search direction is found using a modified version of 
the Polak–Ribière conjugate gradient method (Polak and 
Ribière, 1969). Their method is modified to include 
automatic directional resets if the ߚ parameter falls below 
zero (e.g., Hager and Zhang, 2006; Dai and Yuan, 1999) or 
if successive gradients are no longer sufficiently conjugate. 
This method is described in Equations 3 – 6. 
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where ࢞ is the model, ݂ሺ࢞ሻ is the error function, ࢙௡ is the 
search direction, and ݊ is the iteration number. 
 
Once the search direction is found, the stepsize can be 
calculated using a line-search method. Our method assumes 
the error to be either quadratic or cubic in nature. Under 
this assumption, derivatives along the search direction are 
found using a finite difference technique. These derivatives 
are related to the polynomial coefficients, and thus can be 
used in standard root-finding solutions for quadratics and 
cubics to estimate the minimum value. The solution for this 
becomes the beginning of a new stepsize sub-iteration. 
When the stepsize change falls below some tolerance or a 
set number of sub-iterations have passed, the final stepsize 
estimate is found. As an example, in the quadratic case: 
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where ݁ା, ݁ି, and ݁଴ are the error function values for 
positive, negative, and zero finite difference perturbation 
ሺݎሻ. At this point we then perform a check for global 
convergence by testing the error function at 10 additional 
optimally chosen stepsizes. These points are chosen such 
that the overall distribution of all attempted stepsizes 
mimics a Гሺ2, ௡ߙ

∗ ሻ distribution, where ߙ௡
∗  is the stepsize 

estimate being tested. To do this, the initial distribution if 
multiplied by a notch distribution for all attempted ߙ௜, and 
the maximum probability is found with a targeted brute-
force method. This process ensures the stepsizes used for 
checking global convergence are not stepsizes with already 
known error. If a lower error is found, the stepsize 
algorithm is re-started using that stepsize as a new seed; 
otherwise, ߙ௡

∗  is assumed to produce the global minimum.  

 
Figure 2:  Example of a probabilility distribution used to construct 
the ௣ܸ ௦ܸ⁄  constaint in the error function. The specific form of this 
distribution will vary based on the dataset, but in general should 
resemble what is shown in this figure. 
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After the search direction and stepsize have been found, the 
model can be updated using the standard update rule: 
 

௡ାଵݔ = ௡ݔ +  ௡ .             (10)ݏ௡ߙ
 

This algorithm does not explicitly consider the Wolfe 
Conditions for convergence (described in several papers, 
including Hager and Zhang, 2006); however, extensive 
testing showed that the search direction and stepsize found 
by our method satisfy these in effectively 100% of 
scenarios. As such, we do not include it in order to increase 
the efficiency of the inversion algorithm. 
 
The description above summarized the core functions of 
our inversion method. Being that it is an iterative method, 
after the model is updated the inversion repeats itself, using 
the new model to update the incident angles and gradient, 
and in turn using this to find new search directions and 
stepsizes. After a final inverted model has been established, 
the final step is to undo the data normalization to revert the 
model parameters to their original data domain. 
 
Inversion Results on Synthetic Data 
 
We ran the inversion described in the previously section on 
synthetically generated seismic data and real seismic data 
for an unconventional field. The synthetic data was 
generated using Ricker wavelet in convolutional modeling 
a real well log as the model. Various amounts of random 
white noise were added to the synthetics to test our 
methods response with different SNR’s. In our case study 
we ran the inversion for 25 iterations to ensure optimal 
results, although the reduction in error and the change in 
the inverted model are relatively minor after ~10 iterations. 
The inversion processed individual iterations at a rate of 
several thousand per hour on a single 4-core/8-thread CPU, 
verifying the computational feasibility of using our method 
for large datasets. Note that each CDP is evaluated 
independently and thus the inversion can easily be 
parallelized, making inversions of any size practical. 
 
Figures 3 – 5 overview our inversion of the synthetic 
dataset. Figure 3 displays ௣ܸ, ௦ܸ, and ߩ as well-log curves 
and compares the true model, the initial model, and the 
inverted model. The initial model is a frequency filtered 
version of the true well log with a 0-0-6-8 Hz frequency 
filter. Figure 4 shows the data match between the “true” 
synthetic data and the synthetic data predicted by the 
inversion. The synthetic data used in Figures 3 and 4 has a 
SNR of 5. Figure 5 shows how error progresses at every 
iteration for the inversion shown in Figures 3 and 4. We 
additionally test how the inversion performs under less 
ideal scenarios, specifically with noisy data and with poor 
starting models. Figure 6 shows how the inverted models 
changes as signal to noise ratio is reduced, as well as how 
the inversion results when using a linear starting model. 
 
 

Discussion 
 
Our proposed inversion method is capable of inverting for 
P-wave, S-wave and density information strictly from the 
use of P-P reflection data. The use for the full Knott-
Zoeppritz equations in forward modeling allows for 
significantly better utilization of far offset data, which is 
the domain in which density and (to a lesser extent) S-wave 
differences have a more significant effect on seismic 
reflectivity. Standard AVO approximations are inaccurate 
in these regimes, and thus the estimates of parameters that 
rely on this information are inherently erred.  
 
Overall, the inverted model found by our method is 
extremely accurate. Comparing our estimated model to the 
well log data, as shown in Figure 3, indicates that all major 
events and a many minor events are being recovered 
correctly. The predicted data sections in Figures 4 and 5 
show that the data is being matched very well, even in the 
presence of extreme noise. Figure 4 shows synthetics for 
the extreme case of SNR=0.05, and Figure 5 shows that our 
method is capable of handling noisy data, and at a signal to 
noise ratio of 0.2 (i.e., 5x as much noise as data) our results 
were largely unaffected. Note: SNR is defined by the ratio 
of signal variance to noise variance. Figure 5 shows that 
our method is not very sensitive to the initial model except 
outside of recovering low frequency information. Lastly, 
Figure 6 shows that our inversion converges quickly and 
that there is minimal improvement after ~10 iterations. 
Combined, these factors indicate that our inversion method 
consistently and reliably produces accurate and believable 
estimates of subsurface elastic parameters. 
 
Conclusions 
 
We present a novel method for implementing nonlinear 
AVO waveform inversion. This gradient-based method 
uses the full Knott-Zoeppritz equations in forward 
modeling, significantly improving the accuracy of 
estimates for density and shear wave velocity. This 
inversion uses an automatically resetting conjugate gradient 
scheme to ensure quick convergence and implements an 
effective and efficient method for escaping local minima in 
the error function. Our method is extremely robust: it 
flawlessly handles noisy data without issue, and can use a 
poor starting model so long as it contains some low 
frequency information. Our approach is computationally 
efficient and practically feasible: tens of thousands of 
CDP’s can be inverted in a matter of days on a single 
consumer-grade CPU. Furthermore, the independence 
between CDP’s makes massive parallelization easy to 
implement for larger scale projects. Overall, we believe that 
this method provides an excellent improvement over 
standard AVO inversion techniques and offers an excellent 
balance between accuracy and efficiency. 
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Figure 4:  The prestack seismic data 
for the inversion shown in Figure 3. 
(Top) the actual seismic data, with 
noise added to make the overall signal 
to noise ratio equal to 0.05. (Upper 
Middle) the seismic data predicted by 
the inversion. (Lower Middle) the 
difference between predicted and 
noisy data, and (Bottom) the 
difference between the predicted and 
noise-free data.. The inversion 
reproduces the seismic data almost 
exactly, resulting in effectively no 
signal in the difference section. All 
plots use the same colorscale. 

 
Figure 5:  A demonstration of how our inversion method performs in two traditionally difficult scenarios: 1) on very 
noisy data (SNR = 0.2) and 2) on very noisy data and with a poor initial model (linear initial model). (Upper Left) 
Inverted Vp, Vs and density results for the noisy data. (Upper Right) Inverted Vp, Vs and density results for the noisy 
data using a linear initial model. Our results are not significantly effected by these difficulties, with the exception of 
missing low frequency info in the linear initial model scenario (e.g., 1500 – 1800 ms).  (Bottom) A comparrison of the 
noisy seismic data, seismic data predicted from the inverted model, the difference between the noisy and predicted 
data, and the difference between the noise-free and predicted data. The Upper Row represents “Case 1” (noisy data), 
and the Lower Row represents “Case 2” (noisy data and linear initial model). All plots use the same colorscale. Ideally, 
the noise section difference should contain only noise and the noise-free difference section should be empty.  

 

 
Figure 3:  A comparrison between the inversion results and the well log data at the well location. The smooth initial 
models (Green), final inverted models (Blue), and actual well logs (Red) are shown for P-wave velocity (Top), S-wave 
velocity (Middle), and Bulk Density (Bottom). Our inversion method is able to recover the vast majority of the 
variability in the well log, and is a close match both in terms of phase and amplitude. X-axis represents travel time and 
Y-axis represents the parameter value. 

 
Figure 6:  A plot showing how error 
evolved on every iteration. Error 
values for iterations 1 to 25 are shown. 
All other figures show the results from 
25 iterations. X axis is iteration 
number and Y-axis is error value. 
There is minimal change in error after 
~10 iterations.  


