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SUMMARY

In this paper, we compare two methods for seismic inver-
sion - Sparse Spike Inversion (SSI) and Basis Pursuit Inver-
sion (BPI). Both methods utilize sparse inversion techniques.
We employ a Least-Angle Regression (LARS) Least Absolute
Shrinkage and Selection Operator (LASSO) solver for their
implementation. Experimental results confirm that L1 penal-
ization in the LASSO optimization improves the performance
in terms of recovering reflection coefficients.

INTRODUCTION

Deconvolution is a signal processing operation that, ideally,
unravels the effect of a convolution performed by a linear time
invariant system operating on an input signal. In seismic de-
convolution, a short seismic pulse is transmitted from the earth
surface. The reflected pulses from the ground are received by a
sensor array. Our goal is to reveal the ground layer’s structure
hidden in each of the received seismic traces.

A short seismic pulse (wavelet) is assumed to be known. (Prac-
tically, it is pre-estimated). Even if the wavelet is known,
the inversion process is often unstable. The seismic wavelet
is bandlimited, and the seismic trace might be noisy. There-
fore, there are many possible reflectivity series that could fit
the same measured seismic traces. Our objective is to find the
best estimate of the reflectivity. We assume the reflectivity is
sparse. Hence, its extraction could be done by sparse inversion
techniques.

Sparse seismic inversion methods can produce stable reflectiv-
ity solutions that contain frequencies that are not contained in
the original signal, without necessarily magnifying the noise
in these signals, see e.g., Riel and Berkhout (1985). How-
ever, these methods usually rely on a-priori knowledge that is
employed for increasing the resolution beyond the resolution
offered by wavelet inverse filtering. Typically, a starting model
is built by spatially interpolating well logs along selected hori-
zons. Unfortunately, lateral changes in the waveform interfer-
ence pattern, or in the velocities or impedances, can result in
incorrect starting model and an erroneous inversion.

Matching pursuit decomposition (MPD) (see Nguyen and
Castagna (2010)) decompose the seismic trace into a superpo-
sition of reflectivity patterns. The MPD has some limitations
especially when the dictionary elements are not orthogonal.

Basis pursuit decomposition (BPD) (Chen et al. (2001)) has
many advantages over MPD. BPD was originally developed
as a compressive sensing technique, which utilizes an L1 norm
optimization. It finds a single global solution, whereas MPD
is a path dependent process. Moreover, it is computationally
more efficient, and as BPD introduces a sparsity norm and a

regularization parameter into the objective functions, it can ex-
hibit good lateral stability even when dictionary elements are
not orthogonal.

In this study, we investigate two methods Sparse Seismic In-
version and Basis Pursuit Inversion, see Zhang and Castagna
(2011), Taylor et al (1979). In the following, we briefly present
the models and the solution approaches, and refer the reader to
Zhang and Castagna (2011), Taylor et al (1979) for further de-
tails.

The remainder of the paper is organized as follows. First, we
review the basic theory of the two methods. Then, we describe
our experiments with synthetic and real data. Lastly, we con-
clude and discuss further research.

METHODOLOGY

We can model s(t), the received seismic signal (the observa-
tion) as

s(t) = w(t)∗ r(t)+n(t) (1)

where w(t) is the seismic wavelet, r(t) is the reflectivity series,
and n(t) is the noise. The symbol ∗ denotes one-dimensional
linear convolution operation. This model assumes that the
earth structure can be represented by planar horizontal layers
of constant impedance, so that reflections are generated at the
boundaries between adjacent layers. Each 1D seismic trace is a
convolution of the seismic wavelet and the reflectivity pattern.

The objective is to find an estimate of the reflectivity r(t). The
reflectivity is assumed to be sparse as only boundaries between
adjacent layers may cause a reflection of the seismic wave.

As (1) implies, the seismic trace consists of a linear combi-
nation of w(t) and its time shifts, according to the non-zero
reflectors in r(t). After time discretization, and an addition
of random noise, (1) can be written in matrix-vector form as
follows

sN×1 =WN×MrM×1 +nN×1 (2)

where WN×M ∈ RN×M , also known as the dictionary.

In the Sparse Spike Inversion (SSI) method WN×M is the con-
volution matrix formed by the seismic discrete wavelet w(t).
The inversion problem of finding rM×1 from the noisy mea-
surement sN×1 is formulated as

min‖rM×1‖0 subject to ‖sN×1−WN×MrM×1‖2
2 < ε . (3)

After relaxing L0 to L1-norm we obtain the constraint:

min
rM×1

1
2
‖sN×1−WN×MrM×1‖2

2 +λ‖rM×1‖1 . (4)

The problem formulated in the form of (4) is named Least Ab-
solute Shrinkage and Selection Operator (LASSO) (see Tibshi-
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rani (2013)). The use of L1 penalty in similar problems pro-
motes sparsity of the solution rM×1 (see Chen et al. (2001),
Elad (2010)).

On the other hand, the Basis Pursuit Inversion (BPI) method,
proposed by Zhang and Castagna (2011), utilizes dipole de-
composition to represent the reflectivity series as a sum of even
and odd impulse pairs multiplied by scalars. Each even and
odd pair corresponds to the top and base reflector of a layer.
Since the layer thickness is unknown, the dictionary comprises
all possible thicknesses up to a maximum layer time-thickness.
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Figure 1: 1D synthetic tests of SSI. (a) True reflectivity. (b)
Synthetic trace with 40 Hz Ricker wavelet and SNR= 10 dB.
(c)-(f) SSI inversion results with varying λSSI. (c) λSSI = 0.29,
(d) λSSI = 0.11, (e) λSSI = 0.071, (f) λSSI = 0.025.

Assuming the sample rate is ∆t, each even wedge reflectivity
can be written as

re(t,m,n,∆t) = δ (t−m∆t)+(t−m∆t−n∆t) (5)

and each odd wedge reflectivity can be written as

ro(t,m,n,∆t) = δ (t−m∆t)−δ (t−m∆t−n∆t) . (6)

Since any reflectivity can be written as

r(t) =
N∑

n=1

M∑
m=1

an,m ∗ re(t,m,n,∆t)+bn,m ∗ ro(t,m,n,∆t) (7)

the BPI dictionary consists of a convolution of the wavelet with
the even wedge reflectivity and with the odd wedge reflectivity,
and the objective is to calculate the coefficients an,m and bn,m.
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Figure 2: 1D synthetic tests of BPI. (a) True reflectivity. (b)
Synthetic trace with 40 Hz Ricker wavelet and SNR= 10 dB.
(c)-(f) BPI inversion results with varying λBPI. (c) λBPI = 0.27,
(d) λBPI = 0.087, (e) λBPI = 0.011.

SYNTHETIC EXAMPLES

First, we evaluate the performances of the SSI and the BPI
techniques with synthetic data. To test the methods, we used
a 40 Hz Ricker wavelet and generated a reflectivity series with
sample rate of 2 milliseconds.

To evaluate our result we used the normalized correlation co-
efficient:

ρ =
〈r̂,r〉
‖r̂‖2 ‖r‖2

(8)

where r̂(t) is an estimate of the reflectivity series.

A small modification to the Least-Angle Regression (LARS)
algorithm can solve the LASSO problem, as described in Efrom
et al. (2004). In our simulation, we use the SpaSM toolbox
(Sjöstrand et al. (2012)) to implement the LASSO algorithm
for both the BPI and SSI, as proposed by Rozenberg et al
(2014).

A regularization parameter λ in (4) balances between the re-
flectivity sparsity and the noise. Increasing λ decreases the
sparsity of the solution, whereas decreasing λ may cause noise
amplification. Both SSI and BPI utilize λ as a trade-off factor
that controls the inversion output. However, one cannot com-
pare the values between the methods. Practically, the value of
λ is data dependent and determined empirically.

Figures 1 and 2 show the SSI and BPI inversion results for
a specific test. The non-zero reflection coefficients uniformly
distributed between −0.2 and 0.2 (shown in Figure 1(b). De-
note by D the time difference between consecutive non-zero
reflectivity coefficients. Then D ranges between 10 millisec-
onds to 200 milliseconds, and the reflectivity sparsity p was set
to 0.06. Figures 1(a) and 2(a) show the synthetic reflectivity.
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Figures 1(b) and 2(b) show the synthetic traces, which are a
result of convolution between the wavelet and the reflectivity.
The signal-to-noise ratio (SNR) is quite high (SNR = 10 dB).
Figures 1(c)-(f) and 2(c)-(f) show the results of each of the
techniques with varying parameters.

The series of synthetic tests that we have done during our re-
search indicate that the optimal correlation can be achieved
using different λ values, depending on the channel character-
istics: the number of reflectors, the layers’ thicknesses, the
channel sparsity, and the SNR.
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Figure 3: (a) λ -correlation curve for SSI based on the synthetic
data in Figure 1. (b) λ -correlation curve for BPI based on the
synthetic data in Figure 2.

Figure 3 presents the correlation coefficient for different λ val-
ues under the same conditions of SNR= 10 dB, and sampling
rate of 2 milliseconds, for SSI and BPI methods.

REAL DATA RESULTS

The SSI inversion was tested on a 2D seismic data set shown
in Figure 4. The estimated reflectivity, and seismic data re-
constructed as a convolution between the estimated reflectivity
and a given wavelet, are shown in Figure 5. The obtained cor-
relation between the original and reconstructed seismic data is
s,ŝ = 0.95 for λopt = 9.4×10−3.
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Figure 4: Seismic data.
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Figure 5: (a) Estimated reflectivity matrix; (b) Reconstructed
seismic data.
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CONCLUSION

The results presented in this paper reveal several interesting
aspects of the sparse channel inversion methods. We used both
synthetic and real data examples to evaluate the methods. Both
methods yield reasonable estimates of the reflectivity under
sufficiently high SNR. Our results indicate better performance
of the SSI technique, although correct adjustments of the dic-
tionary atoms selection can make the differences significantly
smaller. We conclude that both methods could practically be
used for seismic exploration and research purposes.

The choice of regularization parameter lambda is still an open
problem. One needs to determine whether the resolution of
the estimated reflectivity is real or a result of using a too small
λ . In addition, in this study, we used a time-spatial-invariant
known wavelet for simplicity. In practice, a time and spatial
varying wavelet could improve the results, taking into account
wave propagation effects, such as attenuation and dispersion.


