
2D/3D Kirchhoff-based Wavefield Continuation
Anthony Barone

1
* and Anthony Vassiliou

2

1
The University of Texas at Austin, Institute for Geophysics,

2
GeoEnergy Inc., Houston, Texas

Summary

In this paper, we overview both 2D and 3D Kirchhoff-

based Wavefield continuation, and outline its usefulness for

re-datuming / topography correction and spatial sampling

regularization. We will quickly describe the background

theory, broadly overview both 2D and 3D implementations,

and show some example results of pre- and post-

continuation data.

Introduction

Many important data processing techniques that are used in

typical seismic processing workflows rely on one or both

the of following assumptions: 1) that data are spatially

located on a regular grid, and 2) that data are all located at

the same elevation. Seismic surveys are often designed

such that these assumptions are close to correct, but (in

particular for land data) they are never exactly met.

Kirchhoff-based Wavefield continuation offers an effective

and efficient method for re-datuming seismic data to

accurately account for the effects of topography. This

method inherently produces an output that is regularly

gridded at user-specified intervals, which both regularizes

the spatial gridding of the data and “fills in” minor holes in

the data coverage. Combined, these effects ensure the

aforementioned data processing assumptions are met rather

than just approximated, which in turn will improve the

accuracy of all subsequent data processing steps in a given

seismic processing workflow.

In this work, we overview the theory and implementation

of both 2D and 3D Kirchhoff-based wavefield continuation.

We implement these continuations in the frequency

domain, where the generalized workflow is:

Data FFT LOOP over frequencies: {LOOP over

output grid: {window data around output location

 apply Kirchhoff weights sum}} Data IFFT.

We implement this such that, at a given frequency, the full

{window weight sum} operation is implemented

using a single [sparse] (matrix)*(matrix)*(matrix)

operation. The 2D and 3D algorithms are functionally

identical, except that 1) the Kirchhoff weights are

computed with a different formula, and 2) the 3D case

includes some additional indexing steps. Due in large part

to the availability of extremely efficient and open-source

FFT and BLAS algorithms, the entire wavefield

continuation process is extremely efficient. For example: a

when run on a single consumer-class CPU (our tests used

Sandy-Bridge and Ivy-Bridge i7’s), a 1-way continuation of

the ~6 GB open-source Stratton 3D dataset ran in a matter

of minutes and had relatively modest memory

requirements, making it feasible for use with large-scale

problems without needing supercomputer-level hardware.

Background

The theory behind Kirchhoff-based Wavefield continuation

dates back to the late 1970’s and early 1980’s, and was

largely due to the work of John Berryhill (e.g., Berryhill

1979, 1984, 1986) and others (e.g., Berkhout, 1982). There

have been subsequent refinements/modifications to the

method (e.g., Bevc, 1995 and 1997), though these are

dealing more with implementation than with the underlying

theory. We refer you to these papers for a more thorough

derivation of the method, but the “important” equation,

often referred to simple as “the Kirchhoff Integral”, is

shown below in Equation 1. The analogous discrete version

is shown in Equation 2.

𝑃(𝒓𝑜𝑢𝑡 , 𝜔) = ∯ 𝑃(𝒓𝑖𝑛 , 𝜔) (
𝜕𝑟

𝜕𝑛

1−𝑖𝜔𝜏

2𝜋𝑟2
) 𝑒𝑖𝜔𝜏𝑑𝑆 , (1)

𝑃(𝒓𝑜𝑢𝑡 , 𝜔) = ∑ ∑ 𝑃(𝒓𝑖𝑛, 𝜔) (
𝜕𝑟

𝜕𝑛

1−𝑖𝜔𝜏

2𝜋𝑟2) 𝑒𝑖𝜔𝜏𝑑𝑥 𝑑𝑦𝑦𝑥 , (2)

where 𝑃(𝒓, 𝜔) is the (pressure) wavefield, 𝒓 is spatial

location of the input or output, 𝜔 is angular frequency, 𝜏 is

traveltime between 𝒓𝑖𝑛 and 𝒓𝑜𝑢𝑡, 𝑟 is the Euclidean

distance between 𝒓𝑖𝑛 and 𝒓𝑜𝑢𝑡, and 𝑛 is a unit vector that is

orthogonal to the input datum surface (𝑆). The
𝜕𝑟

𝜕𝑛
 term is

related to cos 𝜃 between 𝑟 and 𝑛, and is related to

geometric spreading. Equations 1 – 2 correspond to a

Green’s function of 𝐺 =
𝑒𝑖𝑘𝑟

𝑟
−

𝑒𝑖𝑘𝑟′

𝑟′
, where 𝑘 =

𝜔

𝑟
. Since

we use a frequency domain implementation, Equation 2 can

be directly evaluated for the 3D case. For the 2D case, the

∯(…)𝑑𝑆 integral can be transformed to ∬(…)𝑑𝑥𝑑𝑦 and

the wavefield can be assumed invariant in either 𝑥 or 𝑦,

producing the following solution:

𝑃(𝒓𝑜𝑢𝑡 , 𝜔) = ∫ 𝑃(𝒓𝑖𝑛, 𝜔) ∫ (
𝜕𝑟

𝜕𝑛

1−𝑖𝜔𝜏

2𝜋𝑟2) 𝑒𝑖𝜔𝜏𝑑𝑥𝑑𝑦 =

∫ 𝑃(𝒓𝑖𝑛 , 𝜔) (
𝜕𝑟

𝜕𝑛

√−𝑖𝜔𝜏

𝑟√2𝜋
) (1 −

1

𝑖𝜔𝜏
) 𝑒𝑖𝜔𝜏𝑑𝑥 . (3)

Equation 3 can be discretized in the same way Equation 2

was. Equations 2 and 3 form the basis of the 3D and 2D

Kirchhoff wavefield continuation methods, respectively.

One can implement this using a simple nested loop, though

it is possible to achieve a speed improvement of several

orders of magnitude by using a matrix-based approach.

2D/3D Kirchhoff-Based Wavefield Continuation

Method

The exact specifics of the algorithm are proprietary

information, but in this section we will broadly overview

the steps used. All work was done in MATLAB, which is

inherently designed to handle matrix operations such as

these quickly and easily. It is worth quickly noting that all

matrix operations in MATLAB are implemented using an

external BLAS/LAPACK library (in this case Intel’s MKL

is used), meaning that these operations in effect only rely

on MATLAB to act as a wrapper. MATLAB is frequently

thought of as a “slow” language, and admittedly often is,

but any matrix-based operation in MATLAB runs

effectively as fast as natively calling the same

BLAS/LAPACK library from a “fast” language like C/C++

or Fortran would. The same applies to FFT’s, which

MATLAB implements using the FFTW library.

Our Kirchhoff-based wavefield continuation algorithm

follows the following general steps. Note that we describe

this in terms of “source” and “receiver” indices, though this

same process can be applied to other data sorts as well.

1. Data Loading and FFT. This is fairly

straightforward. Depending on available memory and the

data size, one may want to reorder the data such that

primary sort is frequency and resave it to disk. Zero-

padding the data is optional but recommended – the

up/downward continuation implements a circular shift, and

without zero-padding any data shifted above/below the

top/bottom of the data’s time window will be circular

shifted to the bottom/top of the data.

2. Gridding Analysis. The data needs to be resorted

such that each source point and each receiver point each

have a unique row and column in the data. This produces a

data array of size [# frequencies, # shots, # receivers]. This

array will have sparsity equal to the average of
𝑎𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠
 from all shots.

(Optional) if one wants to add reciprocity to the data, it

should be set up and perhaps implemented in this step.

3. Computing Kirchhoff Weight Precursors. Prior to

beginning the main summation loop, it is beneficial to pre-

compute all the frequency-independent quantities required

to compute the Kirchhoff weights. This includes, for

example, distances and traveltimes. Two weighting arrays

need to be constructed – one that weights data grouped by

source index and one that weights data grouped by receiver

index. In addition to the Kirchhoff summation weights, we

incorporate a Tukey/cosine transition window at each data

edge directly into these weighting arrays. When generating

weights one may choose to use the full weight or drop the

“near-field” term for a “far-field” approximation.

4. Main Loop Over Frequencies. At each frequency,

one needs to first construct the actual Kirchhoff weights by

incorporating the frequency dependent effects into the

“weight precursors” computed in step 3. Because weights

depend on either source or receiver index but not both, the

weights can be applied using 2 split operations (this is

mathematically equivalent to splitting a 2D convolution

into two 1D convolutions). If the entire dataset has not been

converted to use the gridding scheme found in Step 2, then

the currently frequency needs to be extracted and converted

to that scheme.

The beauty behind this approach is in how simply and

efficiently the actual summation is implemented. Because

we have weights that can be split by source and receiver

indices and we have data that has been reordered such that

each row and column corresponds to a particular source or

receiver, we can implement the summation throughout the

entire dataset (at a given frequency) using a single

(matrix)*(matrix)*(matrix) operation of the form:

𝐷𝑁𝐸𝑊 = 𝑊𝑅 𝐷𝑂𝐿𝐷 𝑊𝑆 , (4)

where 𝑊 is an array of Kirchhoff summation weights for

source-grouped or receiver-grouped data and 𝐷 represents

the data. These arrays can be either dense or sparse, though

(in particular in the 3D case) there is often a substantial

benefit from making them sparse. Note that multiple

continuations can be combined into a single operation of

the form (𝑊𝑅
1 … 𝑊𝑅

𝑁𝐷𝑂𝐿𝐷 𝑊𝑆
𝑁 … 𝑊𝑆

1). Also note that only

the positive frequencies need to be run in the main loop –

the desired output signal is real, so positive and negative

frequencies must be complex conjugates of each other.

5. Data IFFT. After finishing and main loop, a

standard IFFT was performed to bring the data back to the

time domain, and the data were resorted so that the primary

sort was trace number, not time/frequency. Depending on

your data processing workflow the IFFT and data resorting

may or not be required.

Results and Discussion

We test our codes using a synthetic 2D dataset and a real

3D dataset. The 2D dataset is an extremely dense and

regularly sampled dataset with offsets up to 20+ km, and

serves as a near-ideal test to ensure the theory is working

correctly. The 3D dataset is the open-source Stratton 3D

data available from SEG (in particular, we used the SEGY

files named swath_[1-4]_geometry.sgy). This serves as a

more realistic test case with less dense and irregularly

gridded data. We will show example images from both the

2D and 3D continuations and then will quickly overview

the efficiency algorithm (with a focus on the 3D

continuation).

2D/3D Kirchhoff-Based Wavefield Continuation

2D Wavefield Continuation with Synthetic Data

Figure 1 shows a snapshot of a single shot gather being

upward continued and then downward continued back to

the original datum. This is intended as a proof-of-concept,

and so data is densely sampled, largely noise-free, and on a

flat regular grid, representing a best-case scenario. The 5

sub-images in Figure 1 show the original data (a), the

upward continued data with far-field weights (b) and full

weights (c), and the upward + downward continued data

with far-field weights (d) and full weights (e). This clearly

shows that under ideal conditions the algorithm produces a

nearly 100% error free continuation of the Wavefield. As

expected, using only the far-field weights introduces some

error at very near offsets that is not present when using the

full Kirchhoff summation weights.

3D Wavefield Continuation with the Stratton 3D Dataset

Figure 2 shows the source/receiver layout of the Stratton

3D dataset, and is colored based on (interpolated) surface

elevation. Since we used reciprocity, the shots and

receivers are interchangeable from each other. Figure 3

shows the sparsity pattern of the re-gridded input data. We

incorporated reciprocity, resulting in just under 2,500

sources and 2,500 receivers on an irregular sparse grid with

~977,000 traces (meaning ~16% of the grid points contain

data). Note that the order of the shot/receiver indices is

unimportant, it only matters that they have a unique

row/column associated with them. This allows one to

optionally reorder the data to attempt to improve the speed

of computations with it. Figure 3 shows the data reordered

using an Approximate Minimum Degree algorithm. Lastly,

Figure 4 shows an example receiver line from the dataset

upward continued 1500±20m (max surface elevation relief

is ~40m). We used a replacement velocity of 3,000 m/s,

thus the 1st arrivals should be at a 2-way time of ~1000 ms.

Efficiency

We will focus on the Stratton 3D data for describing

efficiency, as this data is closer to real-world usage than

our synthetic 2D example. This dataset contains ~6 GB of

data, with 3000 time samples (∆𝑡 = 2 𝑚𝑠). We used data

from nearly all sources and receivers (a few locations along

the survey edges were removed), for a total of about

500,000 traces (~977,000 after adding reciprocity). To

conserve memory we down-sampled and windowed the

data in time, though this only effects the number of

iterations in the main loop – the time per iteration and the

initial setup are unaffected by this (with the exception of

the FFT/IFFT steps, though these are extremely fast

regardless). All computations used double precision floats

(mostly since MATLAB has poor support for sparse single

matrices). The execution time break-down was as follows:

1. Auxiliary setup: ~180 Seconds (3 minutes)

 Data/header loading + ibm2ieee: ~45 seconds

 FFT + IFFT + Data resorting: ~45 seconds

 Re-gridding analysis and setup: ~60 seconds

 Tukey window application + Other: ~30 seconds

2. Main Loop: 3.8 ± 0.2 Seconds Per Frequency

 ~3.5% to extract and re-grid current frequency

 ~1.5% to generate frequency-specific weights

 ~95% to implement (𝑊𝑅 𝐷 𝑊𝑆) matrix operation

 Again note that only positive frequencies need to

be run. 1 frequency in 2 time samples out.

These results were implemented using a 4C/8T Ivy-Bridge

i7 running at ~3.1 GHz. It is worth noting that this CPU is

missing some features (notably AVX2 and FMA) and uses

slower DDR3 memory when compared to more modern

CPU’s. These missing features can be utilized by most

BLAS/LAPACK implementations for matrix operations,

suggesting that the time per frequency should be

significantly less (likely less than half) by simply switching

to a newer CPU architecture.

Conclusion

In this work we overview the theory behind 2D/3D

Kirchoff-based wavefield continuation and outlined a very

efficient matrix-based method the implement both 2D and

3D continuations. We demonstrated this method works and

runs quickly enough to process large datasets with

relatively standard consumer-grade hardware. Wavefield

continuation has the promise of becoming an excellent tool

for pre-processing data before “standard” seismic

processing workflows begin in order to accurately

transform the data to a flat and regularly gridded datum,

which is required by many standard processing methods.

An efficient and accurate continuation tool has the potential

to significantly improve numerous data processing

workflows with a minimal amount of extra computational

expense, making it a potentially extremely valuable tool.

Figure 3: The sparsity pattern of the data after

being re-gridded to have each column and

each row represent a unique shot / receiver.

Figure 1: a set of images showing the 2D wavewfeild

continuation. (Top to Bottom): (a) the original data,

(b) the upward continued data with only far-field

weights, (c) the upward continued data witrh near-

and far-field weights, (d) the upward+downward

continued data with only far-field weights, (e) the

upward+downwardd continued data with near- and

far-field weights,

Figure 2: The grid layout of sources and receivers, and the (interpolated) surface elevation.

Color represents the surface elevation, with a maximum elevation relief of just over 40m.

Figure 4: Two example figures fhowing the output of the 3D wavefield continuation.

The upper figure is a common receiver gather showing all shot lines for 1 selected

receiver. Note that due to reciprocity this is identical to the shot gather with the same

position. The lower figure shows a common shot gather, but isolates one particular

receiver line with a constant X value. The X and Y labels are in terms of indicies,

where [X, Y] is on a [30, 40] grid.

