
2D/3D Kirchhoff-based Wavefield Continuation 
Anthony Barone

1
* and Anthony Vassiliou

2 

1
The University of Texas at Austin, Institute for Geophysics,   

2
GeoEnergy Inc., Houston, Texas 

 

Summary 

 

In this paper, we overview both 2D and 3D Kirchhoff-

based Wavefield continuation, and outline its usefulness for 

re-datuming / topography correction and spatial sampling 

regularization. We will quickly describe the background 

theory, broadly overview both 2D and 3D implementations, 

and show some example results of pre- and post-

continuation data. 

 

Introduction 

 

Many important data processing techniques that are used in 

typical seismic processing workflows rely on one or both 

the of following assumptions: 1) that data are spatially 

located on a regular grid, and 2) that data are all located at 

the same elevation. Seismic surveys are often designed 

such that these assumptions are close to correct, but (in 

particular for land data) they are never exactly met. 

Kirchhoff-based Wavefield continuation offers an effective 

and efficient method for re-datuming seismic data to 

accurately account for the effects of topography. This 

method inherently produces an output that is regularly 

gridded at user-specified intervals, which both regularizes 

the spatial gridding of the data and “fills in” minor holes in 

the data coverage. Combined, these effects ensure the 

aforementioned data processing assumptions are met rather 

than just approximated, which in turn will improve the 

accuracy of all subsequent data processing steps in a given 

seismic processing workflow. 

 

In this work, we overview the theory and implementation 

of both 2D and 3D Kirchhoff-based wavefield continuation. 

We implement these continuations in the frequency 

domain, where the generalized workflow is: 

 

Data FFT  LOOP over frequencies: {LOOP over 

output grid: {window data around output location 

 apply Kirchhoff weights  sum}}  Data IFFT.  

 

We implement this such that, at a given frequency, the full 

{window  weight  sum} operation is implemented 

using a single [sparse] (matrix)*(matrix)*(matrix) 

operation. The 2D and 3D algorithms are functionally 

identical, except that 1) the Kirchhoff weights are 

computed with a different formula, and 2) the 3D case 

includes some additional indexing steps. Due in large part 

to the availability of extremely efficient and open-source 

FFT and BLAS algorithms, the entire wavefield 

continuation process is extremely efficient. For example: a 

when run on a single consumer-class CPU (our tests used 

Sandy-Bridge and Ivy-Bridge i7’s), a 1-way continuation of 

the ~6 GB open-source Stratton 3D dataset ran in a matter 

of minutes and had relatively modest memory 

requirements, making it feasible for use with large-scale 

problems without needing supercomputer-level hardware. 

 

Background 

 

The theory behind Kirchhoff-based Wavefield continuation 

dates back to the late 1970’s and early 1980’s, and was 

largely due to the work of John Berryhill (e.g., Berryhill 

1979, 1984, 1986) and others (e.g., Berkhout, 1982). There 

have been subsequent refinements/modifications to the 

method (e.g., Bevc, 1995 and 1997), though these are 

dealing more with implementation than with the underlying 

theory.  We refer you to these papers for a more thorough 

derivation of the method, but the “important” equation, 

often referred to simple as “the Kirchhoff Integral”, is 

shown below in Equation 1. The analogous discrete version 

is shown in Equation 2. 

 

𝑃(𝒓𝑜𝑢𝑡 , 𝜔) = ∯ 𝑃(𝒓𝑖𝑛 , 𝜔) (
𝜕𝑟

𝜕𝑛

1−𝑖𝜔𝜏

2𝜋𝑟2
) 𝑒𝑖𝜔𝜏𝑑𝑆 ,                (1) 

𝑃(𝒓𝑜𝑢𝑡 , 𝜔) = ∑ ∑ 𝑃(𝒓𝑖𝑛, 𝜔) (
𝜕𝑟

𝜕𝑛

1−𝑖𝜔𝜏

2𝜋𝑟2 ) 𝑒𝑖𝜔𝜏𝑑𝑥 𝑑𝑦𝑦𝑥  ,    (2) 

 

where 𝑃(𝒓, 𝜔) is the (pressure) wavefield, 𝒓 is spatial 

location of the input or output, 𝜔 is angular frequency, 𝜏 is 

traveltime between 𝒓𝑖𝑛 and 𝒓𝑜𝑢𝑡, 𝑟 is the Euclidean  

distance between 𝒓𝑖𝑛 and 𝒓𝑜𝑢𝑡, and 𝑛 is a unit vector that is 

orthogonal to the input datum surface (𝑆). The 
𝜕𝑟

𝜕𝑛
 term is 

related to cos 𝜃 between 𝑟 and 𝑛, and is related to 

geometric spreading. Equations 1 – 2 correspond to a 

Green’s function of 𝐺 =
𝑒𝑖𝑘𝑟

𝑟
−

𝑒𝑖𝑘𝑟′

𝑟′
, where 𝑘 =

𝜔

𝑟
. Since 

we use a frequency domain implementation, Equation 2 can 

be directly evaluated for the 3D case.  For the 2D case, the  

∯(… )𝑑𝑆 integral can be transformed to ∬(… )𝑑𝑥𝑑𝑦 and 

the wavefield can be assumed invariant in either 𝑥 or 𝑦, 

producing the following solution: 

 

𝑃(𝒓𝑜𝑢𝑡 , 𝜔) = ∫ 𝑃(𝒓𝑖𝑛, 𝜔) ∫ (
𝜕𝑟

𝜕𝑛

1−𝑖𝜔𝜏

2𝜋𝑟2 ) 𝑒𝑖𝜔𝜏𝑑𝑥𝑑𝑦 =

∫ 𝑃(𝒓𝑖𝑛 , 𝜔) (
𝜕𝑟

𝜕𝑛

√−𝑖𝜔𝜏

𝑟√2𝜋
) (1 −

1

𝑖𝜔𝜏
) 𝑒𝑖𝜔𝜏𝑑𝑥 . (3) 

 

Equation 3 can be discretized in the same way Equation 2 

was. Equations 2 and 3 form the basis of the 3D and 2D 

Kirchhoff wavefield continuation methods, respectively. 

One can implement this using a simple nested loop, though 

it is possible to achieve a speed improvement of several 

orders of magnitude by using a matrix-based approach. 



2D/3D Kirchhoff-Based Wavefield Continuation 

Method 

 

The exact specifics of the algorithm are proprietary 

information, but in this section we will broadly overview 

the steps used. All work was done in MATLAB, which is 

inherently designed to handle matrix operations such as 

these quickly and easily. It is worth quickly noting that all 

matrix operations in MATLAB are implemented using an 

external BLAS/LAPACK library (in this case Intel’s MKL 

is used), meaning that these operations in effect only rely 

on MATLAB to act as a wrapper. MATLAB is frequently 

thought of as a “slow” language, and admittedly often is, 

but any matrix-based operation in MATLAB runs 

effectively as fast as natively calling the same 

BLAS/LAPACK library from a “fast” language like C/C++ 

or Fortran would. The same applies to FFT’s, which 

MATLAB implements using the FFTW library. 

 

Our Kirchhoff-based wavefield continuation algorithm 

follows the following general steps. Note that we describe 

this in terms of “source” and “receiver” indices, though this 

same process can be applied to other data sorts as well.  

 

1. Data Loading and FFT. This is fairly 

straightforward. Depending on available memory and the 

data size, one may want to reorder the data such that 

primary sort is frequency and resave it to disk. Zero-

padding the data is optional but recommended – the 

up/downward continuation implements a circular shift, and 

without zero-padding any data shifted above/below the 

top/bottom of the data’s time window will be circular 

shifted to the bottom/top of the data. 

 

2. Gridding Analysis. The data needs to be resorted 

such that each source point and each receiver point each 

have a unique row and column in the data. This produces a 

data array of size [# frequencies, # shots, # receivers]. This 

array will have sparsity equal to the average of 
# 𝑎𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠
 from all shots.  

 

(Optional) if one wants to add reciprocity to the data, it 

should be set up and perhaps implemented in this step. 

 

3. Computing Kirchhoff Weight Precursors. Prior to 

beginning the main summation loop, it is beneficial to pre-

compute all the frequency-independent quantities required 

to compute the Kirchhoff weights. This includes, for 

example, distances and traveltimes. Two weighting arrays 

need to be constructed – one that weights data grouped by 

source index and one that weights data grouped by receiver 

index. In addition to the Kirchhoff summation weights, we 

incorporate a Tukey/cosine transition window at each data 

edge directly into these weighting arrays. When generating 

weights one may choose to use the full weight or drop the 

“near-field” term for a “far-field” approximation. 

4. Main Loop Over Frequencies. At each frequency, 

one needs to first construct the actual Kirchhoff weights by 

incorporating the frequency dependent effects into the 

“weight precursors” computed in step 3. Because weights 

depend on either source or receiver index but not both, the 

weights can be applied using 2 split operations (this is 

mathematically equivalent to splitting a 2D convolution 

into two 1D convolutions). If the entire dataset has not been 

converted to use the gridding scheme found in Step 2, then 

the currently frequency needs to be extracted and converted 

to that scheme.  

 

The beauty behind this approach is in how simply and 

efficiently the actual summation is implemented. Because 

we have weights that can be split by source and receiver 

indices and we have data that has been reordered such that 

each row and column corresponds to a particular source or 

receiver, we can implement the summation throughout the 

entire dataset (at a given frequency) using a single 

(matrix)*(matrix)*(matrix) operation of the form: 

 

𝐷𝑁𝐸𝑊 = 𝑊𝑅  𝐷𝑂𝐿𝐷 𝑊𝑆 ,              (4) 

 

where 𝑊 is an array of Kirchhoff summation weights for 

source-grouped or receiver-grouped data and 𝐷 represents 

the data. These arrays can be either dense or sparse, though 

(in particular in the 3D case) there is often a substantial 

benefit from making them sparse. Note that multiple 

continuations can be combined into a single operation of 

the form (𝑊𝑅
1 … 𝑊𝑅

𝑁𝐷𝑂𝐿𝐷 𝑊𝑆
𝑁 … 𝑊𝑆

1). Also note that only 

the positive frequencies need to be run in the main loop – 

the desired output signal is real, so positive and negative 

frequencies must be complex conjugates of each other. 

 

5. Data IFFT. After finishing and main loop, a 

standard IFFT was performed to bring the data back to the 

time domain, and the data were resorted so that the primary 

sort was trace number, not time/frequency. Depending on 

your data processing workflow the IFFT and data resorting 

may or not be required.  

 

Results and Discussion 

 

We test our codes using a synthetic 2D dataset and a real 

3D dataset. The 2D dataset is an extremely dense and 

regularly sampled dataset with offsets up to 20+ km, and 

serves as a near-ideal test to ensure the theory is working 

correctly. The 3D dataset is the open-source Stratton 3D 

data available from SEG (in particular, we used the SEGY 

files named swath_[1-4]_geometry.sgy). This serves as a 

more realistic test case with less dense and irregularly 

gridded data. We will show example images from both the 

2D and 3D continuations and then will quickly overview 

the efficiency algorithm (with a focus on the 3D 

continuation). 



2D/3D Kirchhoff-Based Wavefield Continuation 

2D Wavefield Continuation with Synthetic Data 

 

Figure 1 shows a snapshot of a single shot gather being 

upward continued and then downward continued back to 

the original datum. This is intended as a proof-of-concept, 

and so data is densely sampled, largely noise-free, and on a 

flat regular grid, representing a best-case scenario. The 5 

sub-images in Figure 1 show the original data (a), the 

upward continued data with far-field weights (b) and full 

weights (c), and the upward + downward continued data 

with far-field weights (d) and full weights (e).  This clearly 

shows that under ideal conditions the algorithm produces a 

nearly 100% error free continuation of the Wavefield. As 

expected, using only the far-field weights introduces some 

error at very near offsets that is not present when using the 

full Kirchhoff summation weights.  

 

3D Wavefield Continuation with the Stratton 3D Dataset  

 

Figure 2 shows the source/receiver layout of the Stratton 

3D dataset, and is colored based on (interpolated) surface 

elevation. Since we used reciprocity, the shots and 

receivers are interchangeable from each other. Figure 3 

shows the sparsity pattern of the re-gridded input data. We 

incorporated reciprocity, resulting in just under 2,500 

sources and 2,500 receivers on an irregular sparse grid with 

~977,000 traces (meaning ~16% of the grid points contain 

data). Note that the order of the shot/receiver indices is 

unimportant, it only matters that they have a unique 

row/column associated with them. This allows one to 

optionally reorder the data to attempt to improve the speed 

of computations with it. Figure 3 shows the data reordered 

using an Approximate Minimum Degree algorithm. Lastly, 

Figure 4 shows an example receiver line from the dataset 

upward continued 1500±20m (max surface elevation relief 

is ~40m). We used a replacement velocity of 3,000 m/s, 

thus the 1st arrivals should be at a 2-way time of ~1000 ms. 

 

Efficiency 

 

We will focus on the Stratton 3D data for describing 

efficiency, as this data is closer to real-world usage than 

our synthetic 2D example. This dataset contains ~6 GB of 

data, with 3000 time samples (∆𝑡 = 2 𝑚𝑠). We used data 

from nearly all sources and receivers (a few locations along 

the survey edges were removed), for a total of about 

500,000 traces (~977,000 after adding reciprocity). To 

conserve memory we down-sampled and windowed the 

data in time, though this only effects the number of 

iterations in the main loop – the time per iteration and the 

initial setup are unaffected by this (with the exception of 

the FFT/IFFT steps, though these are extremely fast 

regardless). All computations used double precision floats 

(mostly since MATLAB has poor support for sparse single 

matrices). The execution time break-down was as follows: 

1. Auxiliary setup: ~180 Seconds (3 minutes) 

 Data/header loading + ibm2ieee: ~45 seconds 

 FFT + IFFT + Data resorting: ~45 seconds 

 Re-gridding analysis and setup: ~60 seconds 

 Tukey window application + Other: ~30 seconds 

 

2. Main Loop: 3.8 ± 0.2 Seconds Per Frequency 

 ~3.5% to extract and re-grid current frequency  

 ~1.5% to generate frequency-specific weights 

 ~95% to implement (𝑊𝑅 𝐷 𝑊𝑆) matrix operation 

 Again note that only positive frequencies need to 

be run. 1 frequency in  2 time samples out. 

 

These results were implemented using a 4C/8T Ivy-Bridge 

i7 running at ~3.1 GHz. It is worth noting that this CPU is 

missing some features (notably AVX2 and FMA) and uses 

slower DDR3 memory when compared to more modern 

CPU’s. These missing features can be utilized by most 

BLAS/LAPACK implementations for matrix operations, 

suggesting that the time per frequency should be 

significantly less (likely less than half) by simply switching 

to a newer CPU architecture. 

 

Conclusion 

 

In this work we overview the theory behind 2D/3D 

Kirchoff-based wavefield continuation and outlined a very 

efficient matrix-based method the implement both 2D and 

3D continuations. We demonstrated this method works and 

runs quickly enough to process large datasets with 

relatively standard consumer-grade hardware. Wavefield 

continuation has the promise of becoming an excellent tool 

for pre-processing data before “standard” seismic 

processing workflows begin in order to accurately 

transform the data to a flat and regularly gridded datum, 

which is required by many standard processing methods. 

An efficient and accurate continuation tool has the potential 

to significantly improve numerous data processing 

workflows with a minimal amount of extra computational 

expense, making it a potentially extremely valuable tool. 

 

  

Figure 3: The sparsity pattern of the data after 

being re-gridded to have each column and 

each row represent a unique shot / receiver.  



 

Figure 1: a set of images showing the 2D wavewfeild 

continuation. (Top to Bottom): (a) the original data, 

(b) the upward continued data with only far-field 

weights, (c) the upward continued data witrh near- 

and far-field weights, (d) the upward+downward 

continued data with only far-field weights, (e) the 

upward+downwardd continued data with near- and 

far-field weights, 

Figure 2: The grid layout of sources and receivers, and the (interpolated) surface elevation. 

Color represents the surface elevation, with a maximum elevation relief of just over 40m. 

Figure 4: Two example figures fhowing the output of the 3D wavefield continuation. 

The upper figure is a common receiver gather showing all shot lines for 1 selected 

receiver. Note that due to reciprocity this is identical to the shot gather with the same 

position. The lower figure shows a common shot gather, but isolates one particular 

receiver line with a constant X value. The X and Y labels are in terms of indicies, 

where [X, Y] is on a [30, 40] grid. 

 


