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Summary 
 

In this document we expose the ideas and technologies behind GeoEnergy’s noise 

attenuation services. GeoEnergy’s patented adaptive Wavelet Packets (WP) technology is 

contrasted with commonly used filtering tools, and the ability to extend adaptive WP 

technology through iterative methods is described.  

Ideas & Technology 

Adapted Waveform Analysis 

Wavelet packets are a powerful, flexible and computationally cheap form of adapted 

waveforms. Since its inception, analysis with adapted waveforms, AWA, has enabled 

many new applications in signal processing in domains such as image, radar, or audio 

signal processing. In seismic data processing, however, AWA-based methods have not 

yet achieved a very broad deployment. This is not entirely surprising, since a fair amount 

of engineering is needed to scale tools from research up to production. The sheer size of a 

typical seismic data set poses a serious deterrent to the application of any method that is 

computationally more costly than the simplest of transforms. With the availability of 

better tools and faster computers with multi-gigabyte memories, as well as low-cost 

clusters, AWA methods now become increasingly more practical in seismic data 

processing as well. 

Our approach generalizes wavelet analysis and is based on wavelet packets analysis with 

best-basis search [Coifman 1997]. In wavelet analysis, we decompose a signal using a 

library of adapted, compactly supported waveforms, wavelets, to obtain a multi-scale 

representation of the signal's components. The basic building blocks of a wavelet analysis 

are obtained from a compactly supported function or “mother wavelet” x( ) by scaling b 

and translation a. A wavelet transform decomposes the function f t( ) into a set of such 

basis functions, and the inverse wavelet transform reconstructs it perfectly: 

 

basis wavelet function, wavelet transform (continuous), inverse transform 
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Wavelet packets analysis generalizes wavelet analysis by yielding a redundant set of 
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signal decompositions from which many different bases may be selected, each 

representing the same signal from a different perspective. A best-basis is then one which, 

upon some sparsifying operation on its coefficients, provides the best signal 

reconstruction for a given purpose. For example, if the purpose is (lossy) signal 

compression then a basis would be selected that provides the lowest bit-cost of coding the 

most energetic wavelet packet coefficients. The construction of the best-basis proper is 

driven by a function measuring that bit-cost [Averbuch et al 2001]. 

Adaptive vs Fixed Decomposition Space 

As a spatial grouping of echoes, seismic data is well suited to spectral methods. Because 

of the difficulty in picking an adapted tiling of the time-frequency plane (basis), most 

seismic denoising is performed in a fixed basis. Denoising tools are arguably more often 

chosen for the underlying decomposition basis they impose on the data (i.e. Fourier, 

Radon, Wavelet) than on the actual computations performed in that basis. 

We define “denoising” as the removal of “noise” from a “signal”, and we also coin the 

word “designaling” as the removal of “signal” from “noise” – where “noise” and “signal” 

are respectively undesired and desired components of the data. Removal requires 

separation of  “signal” and “noise”; given that along a single trace in the original time 

domain, “signal” and “noise” are usually inseparable, denoising requires the coordination 

of both a mathematical domain in which separation can be achieved and mathematical 

tools that can be successfully applied in that domain. Except for the attenuation of 

multiple reflections, the signal is always geologically meaningful and the noise is not. 

The importance of data representation cannot be underestimated. A simple example is 

shown in Figure 1 where a seismic trace is decomposed with a short-time window 

Fourier transform and a best-basis WP transform, respectively. A tight representation of 

the data, one where few values hold most of the signal’s energy, offers a clear view of the 

set of spatiotemporal events that make up a seismic trace. By finding an optimal time-

frequency tiling of the signal (best basis), the adapted WP decomposition is far more 

efficient at collecting such events, and building a model of the signal, than are traditional, 

non-adaptive methods. 
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Fixed window Fourier transform TF-plane tiling vs  

Adaptive WP decomposition TF-Plane tiling 

 

Figure 1  
 

Local vs Global Approach 

GeoEnergy’s tools leverage the multi-dimensional space-spanning nature of physical 

structures present in seismic data. Thanks to the computationally moderate cost of using 

multi-dimensional wavelet packets, it is feasible to seek the separation of signal and noise 

using all available information along every axis. The swell noise example Figure 3 

visibly depicts this concept; 1D trace-based mathematical tools cannot compete with 3D 

WP in lifting energetic swell noise from fine geological structures. 
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The ability to iterate 

The ability to perform iterative separation of signal and noise is arguably the greatest 

strength of GeoEnergy’s tools. We shall hence explain the method, philosophy and 

requirements of the procedure. 

As depicted in Figure 2 the iterative process is performed as follows: 

1. An initial signal c0 is over-denoised so as to generate a completely noise-free s0 

with maximal signal energy. 

2. The result is subtracted from the original to obtain the residual r0, where the SNR 

is lower (and hence the NSR higher) than in c0. We can consider r0 to be “noise 

heavy” relative to c0, it has a higher proportion of noise than the original signal 

and is hence a good candidate for the next step. 

3. r0 is designaled to generate a completely signal-free n0 with maximal noise 

energy. 

4. A new signal c1 can be generated by subtracting n0 from c0. Because n0 was 

entirely signal-free, there is no loss of signal in c1, only a loss of noise. By the 

same token, comparing r1 to r0 we can state that there has been no loss of noise in 

r1, only a loss of signal. As long as each iteration can pull additional noise-free 

signal and signal-free noise at each iteration, both the signal and the noise models 

will improve until the data is fully separated as shown in Figure 4. 

As stated above, this procedure requires (a) that one can always find a noise-free version 

of the signal and signal-free version of the noise and (b) that additional signal and noise 

must be retrievable with each iteration. If condition (a) is not met, whatever noise is left 

in the signal (or signal in the noise) will be irretrievably lost, and if condition (b) is not 

met the procedure will not converge to a full separation. 

We are currently unaware of any tool other than WP that allows for both those conditions 

to be met, and hence for an iteratively improving denoising to be achieved on seismic 

data. 

Iterative process 
 

Figure 2 
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Multiple types of noise - Peeling layers 

The noise in seismic data is rarely homogeneous in nature (e.g. swell noise is often 

accompanied by cable jerk noise and/or seismic interference). Thanks to the adaptability 

of wavelet packets and GeoEnergy’s approach, both denoising and designaling can be 

parameterized so as to separate one type of noise at a time. In this manner, each type of 

noise can be peeled from the signal until none remains. 

Conclusion 

A core objective of all seismic data processing is to increase the signal-noise ratio in the 

data. It is a fact of life that the achievement of an optimal image of the subsurface is 

hindered by a broad range of noise types. Noise may occur at one or more stages, from 

acquisition to interpretation, defying a general solution to the problem. Without claiming 

to have found such a general solution, GeoEnergy has developed a practical methodology 

to address a great variety of noise problems and to provide results that are superior to any 

one of the existing common practice methods.  
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Swell noise denoising comparisons 
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Figure 3
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Some swell noise iteration results 
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Figure 4 
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Examples 

Apex-shifted multiples 

Apex-shifted multiples are not surface related. This type of coherent noise can not be 

attenuated by Radon transform, SRME or any other noise attenuation method. Attempts 

to modify the Radon transform to compensate for the apex shifting have not been 

successful. The wavelet packet iterative adaptive denoising provides a completely new 

and different alternative into the apex shifted multiple reflection attenuation 
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Figure 5 
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Migration noise 

In this example, clearly non-geological artifacts created by the migration process can be 

seen intersecting geological layers. With each iteration (denoising shown in Figure 6, 

Figure 7), the amount of signal left in r diminishes until no geologically meaningful 

signal is left in the residual. 
 

Initial signal-noise separation 

Original s0 r0 

Figure 6 
 

 

Signal-noise separation after 3 iterations 

Original s2 r2 

Figure 7 
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Land Data 

In this 3-D land seismic data example we show raw prestack time migrated gathers. The 

objective was to perform amplitude versus offset (AVO) computations using these PSTM 

gathers. The SNR of the gathers was very low, yielding unreliable AVO intercept and 

gradient volumes. 

Application of the multidimensional denoising led to much higher SNR and therefore to 

useable AVO intercept and gradient volumes. 
 

GeoEnergy Denoising, pre-stack land data 

 

Figure 8 
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FX Deconvolution Denoising, pre-stack land data 

 

Figure 9 

 

Radon Denoising, pre-stack land data 

 

Figure 10 
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GeoEnergy denoising, pre-stack land data 
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Figure 11 
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